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A contrastive learning approach 
for ICU false arrhythmia alarm 
reduction
Yuerong Zhou1, Guoshuai Zhao1*, Jun Li2, Gan Sun3, Xueming Qian1, Benjamin Moody4, 
Roger G. Mark4 & Li‑wei H. Lehman4*

The high rate of false arrhythmia alarms in Intensive Care Units (ICUs) can lead to disruption of care, 
negatively impacting patients’ health through noise disturbances, and slow staff response time due to 
alarm fatigue. Prior false‑alarm reduction approaches are often rule‑based and require hand‑crafted 
features from physiological waveforms as inputs to machine learning classifiers. Despite considerable 
prior efforts to address the problem, false alarms are a continuing problem in the ICUs. In this work, 
we present a deep learning framework to automatically learn feature representations of physiological 
waveforms using convolutional neural networks (CNNs) to discriminate between true vs. false 
arrhythmia alarms. We use Contrastive Learning to simultaneously minimize a binary cross entropy 
classification loss and a proposed similarity loss from pair‑wise comparisons of waveform segments 
over time as a discriminative constraint. Furthermore, we augment our deep models with learned 
embeddings from a rule‑based method to leverage prior domain knowledge for each alarm type. We 
evaluate our method using the dataset from the 2015 PhysioNet Computing in Cardiology Challenge. 
Ablation analysis demonstrates that Contrastive Learning significantly improves the performance 
of a combined deep learning and rule‑based‑embedding approach. Our results indicate that the final 
proposed deep learning framework achieves superior performance in comparison to the winning 
entries of the Challenge.

ICUs are designed to provide acute care for patients with severe and life-threatening injuries or illnesses using 
sophisticated bedside monitors such as pulse oximeter (PPG), electrocardiogram (ECG), arterial blood pressure 
(ABP) catheter, central venous pressure catheter and ventilators. Ideally, these monitors with a built-in alarm 
system can send an alert to the healthcare providers when a patient’s physiological signals are out of pre-defined 
ranges. On the one hand, arrhythmia alarms in the ICU based monitors are deliberately designed to be highly 
sensitive in order not to miss any life-threatening events. However, high sensitivity compromises the specificity 
of these  alarms1. According to Drew et al.2 the false alarm ratio in ICUs can be as high as 88.8%.

Alarms are falsely triggered by many factors, including noise and artifacts from patient movement, power line 
interference, electrode contact noise, and data collecting device noise. Falsely triggered alarms become an unseen 
threat in ICUs for they not only lead to sleep  deprivation3, inferior sleep  structure4, stress for both patients and 
 staff5 and depressed immune  systems6, but also put patients at risk for the desensitization to warnings and slowing 
of response times. By contrast, only 2–9% of all ICU alarms are correctly triggered and these alarms do require 
an urgent and professional  response7. Therefore, false alarms present an important problem in ICUs  today8.

Methods proposed to reduce the rate of false arrhythmia alarms in the PhysioNet 2015  Challenge9 can be 
roughly divided into two categories: rule-based methods and machine learning methods. The best-performing 
methods from the Challenge 2015 are mostly rule-based and require hand-engineered feature crafting. Rule-
based methods mainly use expert-defined rule-based logic analysis to analyze patients’ physiological  signals10. 
Specifically, methods in this field mainly consist of signal quality evaluating and QRS-complex detection in order 
to analyze heart rate. Machine learning algorithms have been widely used in the medical  field11,12. Peng et al. 
introduce machine learning techniques to transform the nuclear magnetic resonance (NMR) correlational map 
into user-friendly information for point-of-care disease diagnostic and  monitoring11. Lau et al. utilize polym-
erization studies and two dimensional-nuclear magnetic resonance spectrometry (2D-NMR) to investigate the 
hypothesis that HOCl oxidation alters fibrinogen conformation and T2 relaxation time of water protons in the 
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fibrin  gels12. In the false alarm reduction problem, conventional machine learning based methods train a clas-
sification model using hand-crafted features as input to classify the  alarms13. The performance of these prior 
methods depends highly on the quality of these hand-crafted features or on the design of rules which cannot 
automatically model the complex patterns in waveform data.

Although deep learning provides powerful representation learning techniques to automatically capture com-
plex patterns in the data, conventional deep learning approaches for physiological waveform analysis in false 
alarm reduction have had limited success in out-performing the rule-based techniques in the PhysioNet 2015 
 Challenge9. False arrhythmia alarm reduction in ICUs is a challenging problem for deep learning approaches due 
to the high-dimensional data from long sequence length of the multi-channel physiological waveform signals, 
imbalanced classes of true vs. false alarms, and most importantly, a limited number of records with ground-truth 
labels due to the fact that expert-annotation of arrhythmia alarms is laborious and costly to obtain.

To address the above challenges, we design a novel deep contrastive learning framework to detect true 
arrhythmia alarms based on a  CNN14 architecture. In the proposed model, we use CNN as the signal encoder 
to automatically extract the features of the input signals relevant for our classification task. We propose to use 
the idea of Contrastive Learning with Siamese  network15 and discriminative constraints to learn an effective 
lower-dimensional representation of high-dimensional waveform signals to improve the signal encoder, prevent 
over-fitting and overcome the problem of insufficient training data. In addition, to leverage all available training 
records in the dataset, we train our deep learning models using records from all alarm types simultaneously, and 
use learned embeddings from records’ alarm types as input to our deep learning models to enable classification 
across multiple alarm types at the same time. Finally, we augment our model by using a rule-based approach to 
learn an embedding as input to our deep models. This enables our technique to achieve label-efficient learning in 
a small labeled data setting by leveraging rule-based techniques that utilize known physiological structure of the 
signals for the classification task. Results on the unseen test set show that our method outperforms all submitted 
methods on the real-time event in the PhysioNet Challenge  20159.

Our main contributions are summarized as follows:

• We propose a deep learning model in false alarm reduction, using CNN as the signal encoder to reduce the 
length of input signals and detect temporal and spatial patterns in multi-channel waveform data.

• We develop a Contrastive Learning framework by using Siamese Network and calculating a discriminative 
constraint to prevent over-fitting and address the challenge of limited training data.

• We augment our deep learning model with embeddings generated by a rule-based method to leverage 
domain-knowledge specific to each alarm type for label-efficient representation learning.

Related work
Rule‑based methods. Plesinger et al. test each channel in the record for regular heart activity using the 
QRS distribution and derived R-R  information10. Daluwatte et al. develop an algorithm based on global heart-
beat annotations generated by fusing individual heartbeat detection from multiple physiological signals and 
then apply an arrhythmia criterion to the global heartbeat detection to classify the  alarm16. Ansari et al. use a 
multi-modal peak detection algorithm and combines the results from several peak detection algorithms to cre-
ate a robust peak detection  algorithm17. Tsimenidis et al. propose a method that includes high-pass filtering to 
remove baseline instability, scaling to normalize waveform amplitudes, detection of noisy and flat waveforms, 
differentiation to accentuate sharp waveform edges, beat detection, timing between beats preceding alarm onset, 
and detection of alarm  conditions18. He et al. use a derived signal quality index (SQI) to reveal the degree of 
signal  quality19. The SQI-weighted residual error of Kalman filters (KF) is used to complete the data fusion for 
evaluating the heart rate (HR). Finally, the algorithm of arrhythmia false alarm reduction is developed based 
upon the method of combining SQIs and HR estimations derived from ECG and ABP waveforms. Fallet et al. 
estimate heart rate from pulsatile waveforms using an adaptive frequency tracking algorithm or computed from 
ECGs using an adaptive mathematical morphology approach based on the quality of available  signals20. Fur-
thermore, they introduce a supplementary measure based on the spectral purity of the ECGs to determine if a 
ventricular tachycardia or flutter/fibrillation arrhythmia has taken place. Finally, alarm veracity is determined 
based on a set of decision rules on heart rate and spectral purity values. Couto et al. use simultaneous ECG and 
pulsatile  waveforms21. QRS detectors are used to produce for each signal a set of QRS detections which are to 
be used for detecting false alarms. In case some of the signals may be noise-contaminated, the signal quality of 
each waveform is evaluated to determine whether the QRS detection obtained on that waveform is reliable. A 
set of rules is then used for each alarm type. Although rule-based methods are effective and commonly used in 
medical fields, extensive expert knowledge is needed to design the rules and evaluate.

Traditional machine learning methods. Antink et al. present an approach that analyzes multi-modal 
cardiac signals in terms of their beat-to-beat intervals as well as their average  rhythmicity22. Based on this analysis, 
several features in time and frequency domain are extracted and used for several machine learning approaches. 
Eerikainen et al. train Random Forest classifiers for every type of arrhythmia with arrhythmia-specific features 
computed from signal quality information and physiological  features23. Kalidas et al. use a combination of logi-
cal analysis and SVM-based machine learning  techniques13. Information from original signals is used for logical 
analysis and to form the features set. Caballero et al. develop a decision tree for each arrhythmia category, which 
is combined with domain knowledge to produce a set of if/else  statements24. Using the ABP and PPG signals, 
separate decision trees are trained. Afghah et al. propose a model based on coalition game theory that considers 
the inter-features dependencies in determining the salient predictors with respect to false  alarms25. Antink et al. 
present an approach that analyzes multi-modal cardiac signals in terms of their beat-to-beat intervals as well as 



3

Vol.:(0123456789)

Scientific Reports |         (2022) 12:4689  | https://doi.org/10.1038/s41598-022-07761-9

www.nature.com/scientificreports/

their average  rhythmicity22. Based on this analysis, several features in time and frequency domains are extracted 
and used for subsequent machine learning tasks. Zaeri-Amirani et al. propose a low-computational complexity 
game-theoretic feature selection method which is based on a genetic algorithm that identifies the most informa-
tive biomarkers across the signals collected from various monitoring  devices26. Au-Yeung et al. applies a Random 
Forest and meanwhile performed feature selection in order to reduce the complexity of the models and improve 
the efficiency of the  algorithm27.

Deep learning methods. Lehman et  al. present a supervised generative model to classify ventricular 
tachycardia alarms using non-linear embeddings of ECG  dynamics28. The model is a variant of a Denoising 
Autoencoder, learned using a combination of discriminative and generative loss. Furthermore, feature transfor-
mations are explored by utilizing known physiological structure within ECG signals to enable learning under the 
constraints of limited labeled data. To this end, a multi-stage approach is proposed to utilize the FFT-transform 
of consecutive heart beats. Hooman et al. present a method for training neural networks based on neuroevo-
lution by utilizing the Dispersive Flies Optimisation algorithm in a gradient-free population-based  scheme29. 
Mousavi et al. propose a deep learning-based network composed of the CNN layers, attention mechanism, and 
LSTM units to reduce false alarm arrhythmia in  ICUs30. Yu et al. design a multi-channel deep group convolu-
tional neural network for false alarm  reduction31. Their model takes multi-channel raw signals as input and 
different kernels are used for convolution operation according to the type of alarm. Zihlmann et al.32 propose 
two deep learning models for classification of arbitrary-length ECG recordings using the Physionet Challenge 
 201733 dataset. The first model is a deep CNN architecture with averaging-based feature aggregation across time. 
The second model combines convolutional layers for feature extraction with long-short term memory (LSTM) 
layers for temporal aggregation of features. They use two data augmentation techniques, dropout bursts and 
random resampling, for ECG data during training procedure. Hong et  al. propose an ensemble classifier to 
combine expert features and deep learning models together for ECG  classification34 on Physionet Challenge 
2017 dataset. Hyvarinen et al. propose a learning principle for unsupervised representation learning on time 
 series35, which is based on analyzing nonstationarity in temporal data by discriminating between time segments. 
Kiyasseh et al. propose a family of self-supervised pretraining mechanisms based on contrastive learning for 
physiological  signals36. Pei et al. propose a model for time series analysis that learns a similarity measure over 
pairs of time series in a supervised  manner37. In the Siamese Network, two time series are inputted to the same 
recurrent network for feature extraction. Wu et al. propose an end-to-end deep learning model to learn local 
representations of time  series38. A local embedding loss is applied to optimize a Siamese Network and a feature 
space that preserves the temporal location-wise distances between time series can be learned in their framework.

Methodology
In deep learning, CNN has been successfully applied in many different domains such as image  classification39 
as well as different natural language processing  tasks40,41. Motivated by the success of CNN and its variants in 
these various domains, researchers have started using CNN for time series  classification42. Commonly used 
CNN models such as  FCN43 and  ResNet44 are good at extracting local spatial features and ResNet can support 
a very deep architecture. However, in order to take advantage of the power of FCN and ResNet, these models 
use as many CNN layers as possible. It is hard for us to train since we have a limited number of training records. 
Therefore, we train a deep learning model to classify the arrhythmia alarms using a 1-dimensional CNN which 
can extract local features of 1-dimensional data such as time series data. It is small and easy to train. In the pro-
posed model, four CNN blocks are used to extract the features of the raw input signals. Each block has a different 
kernel size. In order to improve the performance of the feature extractor and to avoid the overfitting problem, 
which is crucial in this problem, we propose a pair-wise loss function which utilizes contrastive learning. While 
other approaches use contrastive learning between different records, we utilize contrastive learning method and 
compute pair-wise loss between two different segments inside the same alarm record. Specifically, the proposed 
Siamese Network architecture learns latent representations of the signals through contrastive learning from two 
segments of the same patient waveform record, namely, the ‘alarm-trigger signal’ (or ‘alarm signal’ for short), 
which is the waveform segment that triggered the alarm, and a pre-alarm ‘baseline signal’ which is a randomly 
sampled waveform segment of the same length representing the baseline of the same patient prior to the alarm-
triggering event. In addition, in order to leverage the domain-knowledge encoded in the rule-based methods, 
we augment our model with output from the rule-based method proposed by Plesinger et al.10. For each record, 
we feed the output of the rule-based method into our networks to generate an embedding. After converting raw 
signals into a representation vector, it is then concatenated with the alarm-type embedding and the rule-based 
embedding as input to a classification layer to generate the probability of a false alarm for each record. At last, 
the study was performed in accordance with the relevant guidelines and regulations and in accordance with the 
Declaration of Helsinki.

Model architecture. Figure 1 illustrates the proposed model architecture and deep learning framework. 
The architecture includes a signal encoder, two fully connected layers and a classification layer. The signal 
encoder is based on a CNN architecture, and hence, does not rely on heavy hand-crafting of feature engineer-
ing. We denote the number of time steps as Tl , the number of variables as Ml , the kernel size of CNN layer as Dl , 
the input as X(l) ∈ R

Ml×Tl , the full sizes of filters as W (l) ∈ R
Ml−1×Dl×Ml , and the bias as B(l) ∈ R

Ml×Tl in the 
lth CNN layer. Let X(l)

m,t be the value of the mth (0 < m ≤ M) variables with the tth (0 < t ≤ T) time step input 
series. By the activation function f (·) Rectified Linear Unit(ReLU), we can get the value of each position for 
∀m ∈ {1, 2, 3, . . . ,Ml},∀t ∈ {1, 2, 3, . . . ,Tl},∀l ∈ {1, 2, 3, . . . , L}.
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Two fully connected layers are the alarm embedding layer and rule-based embedding layer respectively. 
With different alarm types, signals may have different features and characteristics unique to each alarm type in 
distinguishing between a true vs. a false alarm. Since we already have the information about the triggered alarm 
type of each record in the training datasets, alarm type of each sample can provide useful information for the 
model when classifying. The alarm embedding layer converts the alarm type of a sample to an embedding with 
a fixed size. Given a one-hot vector A ∈ R

1×N as an alarm type of a given record, the alarm embedding layer 
transforms it into:

where Wa ∈ R
N×Sa is a trainable parameter of the alarm embedding layer, N indicates the number of arrhythmia 

alarm types and Sa indicates the size of alarm embedding.
The rule-based embedding layer converts the output by a rule-based method into an embedding. We denote 

the result output by the rule-based method as R. The rule-based embedding layer transforms it into:

where Er is the embedding of the rule-based output, Wr ∈ R
Sr is a trainable parameter of the rule-based embed-

ding layer and Sr indicates the size of the rule-based embedding.
We combine the strong learning ability of deep learning models and clinical rules and experiences from 

rule-based method by concatenating the latent encoding of raw signals Ee , the alarm type embedding Ea and 
the rule-based embedding Er as follows:

Finally the concatenated vector E ∈ R
1×(Se+Sa+Sr ) is fed into the classification layer, which is comprised of a 

fully-connected layer followed by a sigmoidal output layer to get the output probability O of the triggered alarm 
being true:

where Wc ∈ R
(Se+Sa+Sr )×1 is the trainable parameter of the classification layer and σ is the sigmoid function.

Loss function. In the false alarm reduction problem, the label of each record is just TRUE and FALSE, while 
the length of each waveform channel of each record is 75,000 samples (5-min segment sampled at 250 Hz), 
which means the supervised information is too small to train a deep learning model. Therefore, instead of only 
using the label of each record, we design a pair-wise similarity-based loss function calculated by using different 
segments in the waveforms of the same record as additional information to train our model. The choice of simi-
larity-based loss is motivated by the fact that, clinically, the detection of a true VT event often involves compar-

(1)X
(l)
m,t = f



B
(l)
m,t +

Dl−1�

j=0
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(2)Ea = AWa,

(3)Er = RWr ,

(4)E = Ee ⊕ Ea ⊕ Er .

(5)O = σ(EWc),

Figure 1.  Illustration of the proposed model architecture and deep learning framework. Figure generated in 
PowerPoint version 1808, https:// www. micro soft. com.

https://www.microsoft.com
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ing the signals immediately prior to the alarm onset with signals from the same patient at an earlier time point to 
determine whether there has been a change in the patient’s ECG from his or her baseline. Additionally, sampling 
from the same patient’s baseline signals functions as a data augmentation scheme to increase our effective sample 
size to improve performance in a small labeled data setting. This similarity-based loss works as a discriminative 
constraint and is combined with the binary entropy loss during training. Our model takes the 10 s sequence of 
the multi-channel waveforms immediately prior to the alarm onset as the ’alarm signals’. We use alarm signals 
instead of the whole signals for classification since the exact time of the event that triggered the alarm is within 
10 s of the  alarm45. Using the alarm signals can effectively reduce the computational complexity and improve 
the accuracy of classification due to the difficulty of very long time series classification. Meanwhile, we also 
randomly sample a sequence with the same length as random baseline signals prior to time t − 10 s from the 
same patient as the pre-alarm ‘baseline signal’, where t is the alarm onset time. The signal encoder is a Siamese 
Network, which means it can be seen as two identical encoders, Encoder4A and Encoder4R. They have the same 
configuration with the same parameters and weights. Alarm signals and baseline signals are fed into Encoder4A 
and Encoder4R respectively to get their corresponding feature vector ERe  and EAe  . These two feature vectors are 
then used for calculating the discriminative constraints. Figure 2 illustrates the Siamese Network architecture in 
calculating the discriminative constraint. The discriminative constraint of a record depends on the ground-truth 
of its alarm. If the triggered alarm is false, then the feature vector of its baseline signals ERe  should be close to the 
feature of the alarm signals EAe  since the monitoring system misjudged the vital signs of the last 10 seconds by 
mistakenly triggering an alarm and these two feature vectors should be considered as a similar representation. 
Their constraint can be defined as follows:

where C(i)
false is the discriminative constraint of a record with a false alarm in a mini-batch. σ is the sigmoid func-

tion. f (·) is the signal encoder. If the alarm is true, ERe  should be distant from EAe  for the alarm signals to represent 
real abnormal vital signs while baseline signals do not. Then the constraint should be defined as:

where C(j)
true is the discriminative constraint of a record with a true alarm in a mini-batch. The discriminative 

constraint in a mini-batch can be calculated as:

In the above equation, C is the calculated discriminative constraint in a mini-batch. N1 is the number of false 
alarm records in a mini-batch and N2 is the number of true alarm samples.

In the training procedure, we try to minimize the discriminative constraint for each mini-batch. Meanwhile, 
we also use binary cross entropy loss(BCE) to ensure that the classification part of the model can correctly clas-
sify the classification vector of input signals. The binary cross entropy loss is calculated as:

(6)C
(i)
false = − log(σ (f (EA)

T
f (ER))),

(7)C
(j)
true = − log(σ (−(f (EA)

T
f (ER)))),

(8)C =
1

N1

∑
C
(i)
false +

1

N2

∑
C
(j)
true .

Figure 2.  We use the idea of Siamese Network to calculate our discriminative constraint. Here, Encoder4A 
and Encoder4R take an ‘alarm signal’ and a ‘baseline signal’ sampled from the same waveform record as inputs 
and output their feature vectors respectively. The distance loss is then used to find the similarity of the inputs by 
comparing their feature vectors. The ’alarm signal’ refers to the multi-channel waveform segment that triggered 
the alarm (e.g., 10-s segment prior to the alarm onset), and the ’baseline signal’ segment is randomly sampled 
from a prior time interval of the same record. Figure generated in PowerPoint version 1808, https:// www. micro 
soft. com.

https://www.microsoft.com
https://www.microsoft.com
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In the above equation, LBCE is the calculated binary cross entropy loss. N is the number of alarm records 
in a mini-batch. yi is the label of the triggered alarm of a sample. ŷi is the probability of the alarm of a sample 
being true.

The loss function we minimize during training is the combination of discriminative constraint and the binary 
cross entropy loss. We formulate the loss function as the weighted sum of a binary cross entropy loss and the 
discriminative constraint as:

where w is the weight.

Experiments
Datasets. The study uses publicly-available, de-identified dataset from  PhysioNet9. The PhysioNet/Com-
puting in Cardiology Challenge 2015 provides a dataset with 750 records for algorithm development and 500 
unrevealed records. These records consist of patients’ physiological signals that have been collected from four 
hospitals in the United States and Europe, sourced from the devices made by three major manufacturing com-
panies of intensive care monitor  devices9. Each record contained an alarm for one arrhythmia event and the 
triggered alarm was reviewed and labeled by a team of expert annotators to either true or false. Asystole (ASY), 
Extreme Bradycardia (EBR), Extreme Tachycardia (ETC), Ventricular Fibrillation or Flutter (VFB), or Ventricu-
lar Tachycardia (VTA) are the five alarm types in the datasets. Each record contained two leads of ECG, and at 
least one pulsatile waveform of either PPG or ABP. In some records, both pulsatile waveforms or a respiratory 
signal were present. All signals have been re-sampled to a resolution of 12 bits and had a sampling frequency of 
250 Hz, therefore each record is 5 min or 5 min and 30 s long. The alarm onsets are 5 min from the beginning of 
each record. The exact time of the event that triggered the alarm varies somewhat from one record to another, 
but in order to meet the AAMI standards, the commencement of the event must be within 10 seconds of the 
 alarm45. For Event 1, which is a real-time alarm suppression problem, each record is exactly 5 min long. For 
Event 2, each record contains an additional 30 s of signals following the time of the alarm. We focus on Event 1 
in this paper. Some statistics are shown in Table 1, and more detailed statistics about this dataset could be found 
in Supplementary Appendix.

Pre‑processing. In this paper, we focus on the real-time event and only use the first 300 s of signals for 
each record, which means only information prior to the alarm onset is used. Therefore, for each record we use, 
the event that triggered the alarm is during the last 10 s immediately prior to the alarm onset. Before we feed 
the signals into the model, raw signals are subjected to imputation and standardization. In the imputation part, 
some patients do not have the record of certain signals. Therefore, these missing signals are imputed with 0. In 
the standardization part, each signal is normalized to a range of 0 to 1.

Setup. In the experiments, we use fivefold cross validation. For each cross validation, one fold that is used 
for evaluating the model has 150 records and the remaining fourfold that are used to train the model has 600 
records. In the end, all evaluation results are averaged.

We use 4 parallel CNN blocks in the signal encoder. These 4 CNN blocks have different filter sizes, which are 
50, 100, 200, and 400 respectively. Each CNN block has two convolutional layers with the same filter size. The 
first convolutional layer is composed of 64 filters with a stride of 5, a Batch Normalization  layer46 and a Rectified 
Linear Unit(ReLU)  layer47. The second convolutional layer has the same hyperparameters as the first layer except 
for the number of input channels. Convolutional layers are followed by a Global Max Pooling layer to aggregate 
high-level discriminative features and flatten features across channels. The output sizes of the rule-based embed-
ding layer and the alarm type embedding layer are both set as 64.

Our model was trained with a maximum of 1000 epochs and a mini-batch size of 256. We use Adam 
 optimizer48 to minimize the BCE loss and the discriminative constraint with learning rate of 0.001. To prevent 
the over-fitting problem, we use L2 regularization with a value of 0.0005. The dropout rate before each CNN block 
is set as 0.8. To overcome the problem of imbalanced classes, a weight of 1.5 was added to the positive samples in 
the BCE loss function as the number of negative alarm records is roughly 1.5 times than the number of positive 
alarm records. The weight of the discriminative constraint is set to 1.5 during training. The rule-based method 

(9)LBCE =
1

N

N∑

i

−yi log ŷi −
(
1− yi

)
log

(
1− ŷi

)
.

(10)L = LBCE + w ∗ C,

Table 1.  Statistics of the PhysioNet Challenge 2015 training set.

Arrhythmia Definition Count/ratio True alarms False alarms

ASY 0 beats in 4s 122/17% 22 100

EBR > 5 beats, HR < 40 bpm 89/11% 43 46

ETC > 17 beats, HR > 140 bpm 140/17% 131 9

VTA > 5 ventricular beats, HR > 100 bpm 341/47% 89 252

VFB Fibrillation waves in 4 s 58/7% 6 52
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with which we choose to combine our model is proposed by Ref.10. Our model was implemented using Python 
programming language and PyTorch deep learning  library49.

Compared methods. We evaluate our proposed model on the hidden test set and present comparisons to 
the existing deep learning methods commonly used for time-series classification and the top three methods of 
the real-time event listed on the challenge website. The compared methods are summarized as follows. (1) MLP 
We apply the multi-layer perceptron as a feature extractor of the input waveform and then use a dense layer to 
classify. (2) FCN We use a fully-connected convolutional network as the feature extractor of the input waveform. 
(3) ResNet We use ResNet as the feature extractor of the input waveform (4) RB1 A rule-based method based on 
descriptive statistics and Fourier and Hilbert  transforms10. (5) ML1 A machine learning model that uses a com-
bination of logical and SVM-based  techniques13. (6) RB2 A rule-based method that detects QRS and analyses 
the signal quality and then applies a different rule to each alarm  type21. (7) EDGCN A deep group convolutional 
neural network proposed by Yu et al.31.

Results. The evaluation metrics for false alarm reduction are classification accuracy (ACC), true positive rate 
(TPR) and true negative rate (TNR). The PhysioNet Challenge  20159 also provides an official scoring mechanism 
for evaluating. It is defined as score = (TP + TN)/(TP + TN + FP + 5× FN) , where TP is true positives, FP 
is false positives, FN is false negatives, and TN is true negatives. The Challenge Score focuses more on the TPR 
value, since mistakenly classifying a true alarm as false results in significantly more severe consequences.

During training, we evaluate our model on the fivefold validation set. The average of the challenge score from 
the fivefold result is 87.00 with a standard deviation of 4.84. The detailed results are included in Supplementary 
Appendix.

Table 2 shows the detailed performance comparisons with the compared methods on the hidden test set. The 
performance of each alarm type is denoted as N/A since there are no such statistics in the paper. The higher the 
ACC, TPR, TNR and score, the better the performance. It is observed that our proposed contrastive learning 
model out-performs other baseline methods in the hidden test set. Note that the baseline methods in Table 2, 
including FCN and ResNet, are trained without contrastive learning. In Supplementary Appendix, we also present 
the performance comparison of FCN, ResNet and our CNN as different “backbone” encoders in our proposed 
contrastive learning framework.

Comparison with other models, especially with rule-based models, shows that it is difficult for common deep 
learning models to achieve high performance. There are many reasons for the poor performance of these models. 
First of all, many possible reasons can lead to false alarms including noise, patient manipulation or movement, 
mis-configuring, staff manipulation and leads falling off or mis-identification of signals. Second, the very long 
sequence length and imbalanced classes in the given datasets are big challenges for deep learning models. In 
addition, the number of labeled samples is crucial for classification using deep learning models while there are 
only 750 samples in the given training set which extremely limits the performance of these models. In our pro-
posed model, we use 4 different kernel sizes from 50 to 400 in the CNN layers, which help alleviate the problem 
that the sequence length is too long for larger kernel sizes and can more effectively detect abnormal signals.

Table 2.  Performance comparison on the test set of PhysioNet Challenge 2015. Best performing values in each 
performance metric are given in bold.

Arrhythmia

MLP FCN ResNet RB2 ML1 RB1 EDGCN Ours

TPR 
(%)

TNR 
(%) Score

TPR 
(%)

TNR 
(%) Score

TPR 
(%)

TNR 
(%) Score

TPR 
(%)

TNR 
(%) Score

TPR 
(%)

TNR 
(%) Score

TPR 
(%)

TNR 
(%) Score

TPR 
(%)

TNR 
(%) Score

TPR 
(%)

TNR 
(%) Score

ASY 17 82 53.95 61 78 64.48 83 64 61.68 75 94 82.46 75 90 78.95 100 97 97.06 78 82 73.68 100 97 97.42

EBR 92 9 37.61 67 64 42.28 87 41 49.57 96 63 72.06 92 84 77.78 100 74 84.38 100 71 82.47 100 72 83.51

ETC 100 0 87.80 100 0 95.50 100 0 95.50 100 80 98.63 100 80 98.63 97 100 87.65 100 60 98.20 97 100 87.80

VTA 21 87 44.40 15 85 41.18 56 69 48.55 71 95 73.26 89 90 75.10 82 84 72.73 90 80 75.91 91 83 78.75

VFB 0 96 50.00 56 98 71.62 78 90 77.27 83 94 84.09 100 71 75.00 83 91 81.82 100 92 93.10 78 94 80.30

Real-time 66 77 51.54 66 80 52.79 83 66 59.11 89 91 79.02 94 82 79.44 93 87 81.62 96 80 80.68 96 86 84.47

Table 3.  Quantitative results of ablation study on test set. Best performing challenge scores in each column are 
given in bold.

Components

ASY EBR ETA VTA VFB Real-timeBasic Rule Constraint

� 74.85 40.43 95.50 51.69 52.13 60.35

� � 62.30 46.62 96.40 56.63 55.56 60.69

� � 96.13 80.20 95.50 69.93 80.30 78.90

� � � 97.42 83.51 87.80 78.75 80.30 84.47
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Ablation study. Our method has three components: signal encoder, discriminative constraint and rule-based 
embedding. We implement an ablation study by analyzing the quantitative results on the hidden test set as 
shown in Table 3. It can be observed that the more components we use the higher the performance is. Using only 
the signal encoder, the real-time event score can only achieve a challenge score of 60.35, which is only slightly 
better than the performance of ResNet, a common deep learning model with the best score in Table 2.

We observe that using discriminative constraints during training leads to improved performance in the overall 
real-time event score. Furthermore, it improves the performance of all alarm types except asystole. Augmenting 
the CNN-based signal encoder with a rule-based embedding can improve the performance significantly. The 
rule-based model contains information about the descriptive statistics and fuzzy logic derived based on domain-
knowledge of the waveform for each alarm type, and thus enhances the signal encoder’s ability to more accurately 
distinguish between true vs. false alarms.

The discriminative constraints utilize the idea of contrastive learning to address the problem of over-fitting 
and imbalanced classes. Our results indicate that adding discriminative constraints to the combined a model of 
signal encoder and rule-based embeddings leads to the best performance in the Challenge score, with significant 
performance improvement from 78.90 to 84.47. Our results demonstrate the effectiveness of the proposed loss 
function.

Conclusions and future work
False arrhythmia alarm reduction in ICUs is a challenging task for deep learning due to the very long sequence 
length of physiological signals, imbalanced classes and a limited number of labeled records. In this paper, we 
present a contrastive learning framework based on Siamese Network for false alarm reduction. During training, 
we use discriminative constraints to improve the feature extraction of signals. Furthermore, we augment our 
proposed model with a rule-based technique by using embeddings from the outputs of the rule-based method 
to regularize our deep learning model for label-efficient representation learning. Results show that the proposed 
method detected 86% of false alarms in the test set. The detection rate of true alarms was 96%. Using the official 
given scoring equation of the challenge, we achieved a score of 84.47 in the real-time event, outperforming other 
methods in the same task in the 2015 PhysioNet Challenge for the false arrhythmia alarm reduction.

Since the supervised information is too small to train a common deep learning model, making better use of 
the input data may be a promising direction. In future work, we will consider using self-supervised learning tech-
niques to expand the scale of training data since we can set multiple pseudo-labels according to the downstream 
task to pretrain the model. Another potential direction is to pretrain an unsupervised learning model, such as 
BERT for the unlabeled time series data and then finetune the model in the downstream task.
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